Spatial analysis of volcanic ash dispersion from Popocatépetl: probability estimation and influence area mapping in a risk context
Main Article Content
Abstract
Maps of volcanic ash deposition probability and arrival time at the surface are presented, key tools for volcanic risk management at Popocatepetl. These maps were generated from Fall3D ash dispersion forecasts between 2017 and 2022, considering hypothetical eruptions of 3, 5 and 10 km height, with a duration of one hour and a dispersion simulation of nine hours. Using the Hazardmaps code, the probability of deposition ≥100 g/m² and its arrival time were estimated, visualized using ArcGIS from NetCDF files. The maps cover an area of 400 x 400 km around the crater, excluding deposits outside this region. The probabilities shown are ≥2%. This study represents the most comprehensive analysis carried out for the region, incorporating multiple meteorological conditions and eruptive column height scenarios defined from observed eruptive activity over the past 30 years. It provides a detailed description of areas of volcanic ash influence not previously observed in the field, improving the understanding of volcanic risk.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
PLUMX Metrics
References
Alberico, I., Petrosino, P., Lirer, L., 2011. Volcanic hazard and risk assessment in a multi-source volcanic area: the example of Napoli city (Southern Italy). Natural Hazards and Earth System Sciences 11 (4), 1057–1070, https://doi.org/10.5194/nhess-11-1057-2011.
Baxter, P. J., Searl, A. S., Cowie, H. A., Jarvis, D., Horwell, C. J., 2014. Evaluating the respiratory health risks of volcanic ash at the eruption of the Soufrière Hills Volcano, Montserrat, 1995 to 2010. Geological Society Memoirs 39 (1), 407–425, https://doi.org/10.1144/M39.22.
Bonasia, R., Scaini, C., Capra, L., Nathenson, M., Siebe, C., Arana-Salinas, L., Folch, A., 2014. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety. Bulletin of Volcanology 76 (1), 789, https://doi.org/10.1007/s00445-013-0789-z.
García-Reynoso, A., Zavala-Hidalgo, J., Delgado-Granados, H., Garcia-Escalante, J., Gómez-Ramos, O., Herrera-Moro, D., 2023. An automated ash dispersion forecast system: case study Popocatépetl volcano, Mexico. Journal of Applied Volcanology 12 (9), https://doi.org/10.1186/s13617-023-00135-4.
García-Reynoso, A., Zavala-Hidalgo, J., Delgado-Granados, H., Herrera-Moro, D. R., 2019. The Use of HPC on Volcanic Tephra Dispersion Operational Forecast System. En: Torres, M., Klapp, J., Gitler, I., Tchernykh, A. (Eds.), Supercomputing. Springer International Publishing, pp. 110–117, https://doi.org/10.1007/978-3-030-10448-1_10.
Instituto Nacional de Estadística y Geografía (INEGI), 2020. Marco Geoestadístico. Censo de Población y Vivienda 2020. [Archivo shapefile] https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463807469.
Instituto Nacional de Estadística y Geografía (INEGI), 2022. Red Nacional de Caminos RNC. [Archivo shapefile] https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463770558.
Martin-Del Pozzo, A. L., González-Morán, T., Espinasa-Pereña, R., Butron, M. A., Reyes, M., 2008. Characterization of the recent ash emissions at Popocatepetl Volcano, Mexico. Journal of Volcanology and Geothermal Research 170 (1-2), 61–75, https://doi.org/10.1016/j.jvolgeores.2007.09.004.
Martin-Del Pozzo, A. L., Nieto-Torres, A., 2024. Ashfall characteristics and development of the ash monitoring network during three decades of the long-lived eruption of Popocatépetl Volcano, México. Journal of Volcanology and Geothermal Research 454, 108176, https://doi.org/10.1016/j.jvolgeores.2024.108176.
Nieto-Torres, A., Martin-Del Pozzo, A. L., 2021. Ash emission from a longlived eruption at Popocatépetl volcano and mapped respiratory effects. Bulletin of Volcanology 83 (68), https://doi.org/10.1007/s00445-021-01490-z.
Phillips, J., Barclay, J., Pyle, D., Armijos, T., Hicks, A., Few, R., 2019. Dynamic and extensive risk arising from volcanic ash impacts on agriculture. Global Assessment Report on Disaster Risk Reduction (GAR 2019). United Nations Office for Disaster Risk Reduction.
Rew, R., Davis, G., 1990. NetCDF: an interface for scientific data access. IEEE Computer Graphics and Applications 10 (4), 76–82, https://doi.org/10.1109/38.56302.
Rivera-Tapia, A., Yáñez-Santos, A., Cedillo-Ramírez, L., 2005. Emisión de ceniza volcánica y sus efectos. Ecosistemas 14 (3), 107-115.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., Huang, X.-Y., 2019. A Description of the Advanced Research WRF Model Version 4. National Center for Atmospheric Research.
Wilson, G., Wilson, T. M., Deligne, N. I., Cole, J. W., 2014. Volcanic hazard impacts to critical infrastructure: A review. Journal of Volcanology and Geothermal Research 286, 148–182, https://doi.org/10.1016/j.jvolgeores.2014.08.030