Aerial biomass maps of forests in Northern Durango, Mexico, using subpixel, spectral and textural variables

Authors

  • Juan Andrés Almazán González Universidad Nacional Autónoma de México, Instituto de Geografía, Ciudad de México, México
  • Jorge Prado Molina Universidad Nacional Autónoma de México, Instituto de Geografía, Ciudad de México, México.
  • Stéphane Couturier Universidad Nacional Autónoma de México (UNAM), Instituto de Geografía, Laboratorio de Análisis Geo-Espacial (LAGE), Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México; Universitat de Barcelona, Departament de Biología Evolutiva, Ecología i Ciéncies Ambientals, Facultat de Biología, Integrative Crop Ecophysiology Group, Avda. Diagonal, 643, CP 08028, Barcelona
  • Lilia de Lourdes Manzo Delgado Universidad Nacional Autónoma de México, Instituto de Geografía, Ciudad de México, México.

DOI:

https://doi.org/10.22201/igg.25940694e.2024.2.122

Keywords:

Biomass map, subpixel variables, lineal spectral unmixing, vegetation fraction, spectral variables

Abstract

Aerial forest biomass maps available in the scientific literature usually are of restricted access, in static (pdf) format, and the associated studies focus more on the biomass estimation model than on the map. The purpose of this work was to determine the usefulness of subpixel variables to generate forest biomass maps and compare them against spectral and textural variables.

The study zone was located in an area of ​​11,336.82 km2, of forests in the north of Durango, Mexico. Ninety Six sampling clusters from the National Forest and Soil Inventory 2009-2014 and 9 SPOT5 images were employed.

Maps constructed with subpixel variables with linear spectral unmixing and vegetation fraction (VF) (scale 1:750 000) were comparable with the spectral variables, obtained with the NDVI43, since they presented an RMSE of 56.54 Mg ha-1 and R2 of 0.69, and RMSE of 50.38 Mg ha-1 and R2 of 0.55, respectively. Although maps showed a similar biomass distribution, the model with the VF was more robust for estimating extreme values, had a better coefficient of determination, and in addition it is an easy to interpret variable.

Results will be published as web maps, with several layers of information as open downloadable data.

Downloads

Download data is not yet available.

References

Adams, J.B., Smith, M. O., y Gillespie, A. R., 1993. Imaging spectroscopy: interpretation based on spectral mixture analysis. En Pieters, C. M., y Englert, P., (Eds.). Remote Geochemical Analysis: Elemental and Mineralogical Composition. Cambridge University Press, New York.

Aguirre-Salado, C. A., Valdez-Lazalde, J. R., Ángeles-Pérez, G., de los Santos-Posadas, H. M., Haapanen, R., y Aguirre-Salado, A. I., 2009. Mapeo de carbono arbóreo aéreo en bosques manejados de pino Patula en Hidalgo, México. Agrociencia 43(2), 209-220. https://doi.org/10.1007/s11442-012-0955-9

Aguirre-Salado, C. A., Treviño-Garza, E. J., Aguirre-Calderón, O. A., Jiménez-Pérez, J., González-Tagle, M. A., Valdez-Lazalde, J. R. y Aguirre-Salado, A. I., 2012. Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico. Journal of Geographical Sciences 22(4), 669-680. https://doi.org/10.1007/s11442-012-0955-9

Aguirre-Salado, C. A., E. J. Treviño-Garza, O. A. Aguirre-Calderón, J. Jiménez-Pérez, M. A. González-Tagle, J. R. Valdéz-Lazalde y L. Miranda-Aragón, 2014. Mapping aboveground biomass by integrating geospatial and forest inventory data through a k-nearest neighbor strategy in North Central Mexico. Journal of Arid Land 6(1), 80-96. https://doi.org/10.1007/s40333-013-0191-x

Alianza México para la Reducción de Emisiones de Carbono por Deforestación y Degradación (Alianza México REDD+), 2013. Densidad de carbono en la biomasa leñosa aérea de los bosques y selvas de México [Documento WWW]. URL https://www.alianza-mredd.org/wp-content/uploads/Files/Biblioteca%20Territorios/M-REDD%2BDensidadBiomasaLenosa_mapa.pdf (acceso 18.10.2024).

Basuki, T. M., Skidmore, A. K., van Laake, P. E., van Duren, I., y Hussin, Y. A., 2012. The potential of spectral mixture analysis to improve the estimation accuracy of tropical forest biomass. Geocarto International 27(4o), 329-345. https://doi.org/10.1080/10106049.2011.634928

Castillo-Santiago, M. Á., Ghilardi, A., Oyama, K., Hernández-Stefanoni, J. L., Torres, I., Flamenco-Sandoval, A., and Mas, J. F., 2013. Estimating the spatial distribution of woody biomass suitable for charcoal making from remote sensing and geostatistics in central Mexico. Energy for Sustainable Development 17(2), 177-188. https://doi.org/10.1016/j.esd.2012.10.007

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), sin fecha. Oferta de biomasa [Documento WWW]. URL https://energia.conahcyt.mx/planeas/biomasa/oferta (acceso 18.10.2024).

Eckert, S., 2012. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote sensing 4(4), 810-829. https://doi.org/10.3390/rs4040810

Fernández-Manso, O., Fernández-Manso, A., y Quintano, C., 2014. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images. International Journal of Applied Earth Observation and Geoinformation 31, 45-56. https://doi.org/10.1016/j.jag.2014.03.005

Foody, G. M., Boydb, D. S., y Cutler, M. E., 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85, 463-474. https://doi.org/10.1016/S0034-4257(03)00039-7

Galeana-Pizaña, J. M., López-Caloca, A., López-Quiroz, P., Silván-Cárdenas, J. L., y Couturier, S., 2014. Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach. International Journal of Applied Earth Observation and Geoinformation 30, 179-189. https://doi.org/10.1016/j.jag.2014.02.005

Galeana-Pizaña, J. M., Hernández, J. M. N., y Romero, N. C., 2016. Remote sensing-based biomass estimation. Environmental Applications of Remote Sensing. https://doi.org/10.5772/61813

Gerencia del Sistema Nacional de Monitoreo Forestal (CONAFOR-GSNMF), 2022. Contenido de biomasa formación forestal (Tn/Ha) [Documento WWW]. URL https://idefor.cnf.gob.mx/layers/geonode%3Abiomasa_estrato_4326 (acceso 18.10.2024).

Haralick, R. M., y K. Shanmugam, 1973. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics. (6): 610-621.

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Kelsey, K. C., y Neff, J. C., 2014. Estimates of aboveground biomass from texture analysis of landsat imagery. Remote Sensing 6(7), 6407-6422. https://doi.org/10.3390/rs6076407

López-Serrano, P. M., López-Sánchez, C. A., Díaz-Varela, R. A., Corral-Rivas, J. J., Vargas-Larreta, B., y Álvarez-González, J. G., 2015. Estimating biomass of mixed and uneven-aged forests using spectral data and a hybrid model combining regression trees and linear models. iForest-Biogeosciences and Forestry 9(2), 226-234. http://doi.org/10.3832/ifor1504-008

López-Serrano, P. M., López Sánchez, C. A., Solís-Moreno, R., y Corral-Rivas, J. J., 2016. Geospatial Estimation of above Ground Forest Biomass in the Sierra Madre Occidental in the State of Durango, Mexico. Forests 7(3), 70. https://doi.org/10.3390/f7030070

Lu, D., Mausel, P., Brondızio, E., y Moran, E., 2004. Relationships between forests stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest ecology and management 198(1), 149-167. https://doi.org/10.1016/j.foreco.2004.03.048

Lu, D., 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing 26(12), 2509-2525. https://doi.org/10.1080/01431160500142145

Lu, D., Batistella, M., y Moran, E., 2005. Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogrammetric Engineering & Remote Sensing 71(8), 967-974. https://doi.org/10.14358/PERS.71.8.967

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G. y Moran, E., 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth 9(1), 63-105. https://doi.org/10.1080/17538947.2014.990526

Prieto R., J. A. y J. C. Hernández D., 2007. Estudio regional forestal. Caso UMAFOR No. 1001, Guanaceví, Durango. Prieto R., J. A. y J. C. Hernández D. (eds.). Durango, México. 256 p.

Roberts, D. A., Smith, M. O., & Adams, J. B., 1993. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sensing of Environment 44(2-3), 255-269.

Roberts, D. A., G. Batista, J. Pereira, E. Waller y B. Nelson., 1999. Change identification using multitemporal spectral mixture analysis: Applications in eastern Amazonia. In: Luneta, R. S. y Elvidge, C. D., (eds.). Remote sensing change detection: environmental monitoring methods and applications. EU. pp. 137-161.

Rock, B. N., J. E. Vogelmann, D. L. Williams, A. F. Vogelmann y T. Hoshizaki. 1986. Remote Detection of Forest Damage: Plant responses to stress may have spectral “signatures” that could be used to map, monitor, and measure forest damage. Bioscience. 36(7): 439-445. https://doi.org/10.2307/1310339

Rodríguez-Veiga, P., Quegan, S., Carreiras, J., Persson, H. J., Fransson, J. E., Hoscilo, A., and Balzter, H., 2019. Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation 77, 53-68. http://doi.org/10.1016/j.jag.2018.12.008

Rojas-García, F., De Jong, B. H., Martínez-Zurimendí, P. y Paz-Pellat, F., 2015. Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science 72(6), 835-864. https://doi.org/10.1007/s13595-015-0456-

Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. y Harlan, J. C., 1974. Monitoring the vernal advancement of retrogradation of natural vegetation. National Aeronautics and Space Administration, Goddard Space Flight Center (NASA/GSFC). Greenbelt, Maryland, EEUU.

Sanchez-Azofeifa, A., Antonio Guzmán, J., Campos, C.A., Castro, S., Garcia-Millan, V., Nightingale, J. y Rankine, C., 2017. Twenty-first century remote sensing technologies are revolutionizing the study of tropical forests. Biotropica, 49(5), 604-619. https://doi.org/10.1111/btp.12454

Silván-Cárdenas, J. L., Corona-Romero, N., Galeana-Pizaña, J. M., Núñez-Hernández, J. M., y Madrigal-Gómez, J. M., 2015. Geospatial technologies to support coniferous forests research and conservation efforts in Mexico. En Ronald P. Weber (Ed.). Old-Growth Forests and Coniferous Forests: Ecology, Habitat and Conservation. Nova Science Pub Inc., Reino Unido.

Silván-Cárdenas, J. L., y Wang, L., 2010. Retrieval of subpixel Tamarix canopy cover from Landsat data along the Forgotten River using linear and nonlinear spectral mixture models. Remote Sensing of Environment 114(8), 1777-1790. https://doi.org/10.1016/j.rse.2010.04.003

Spot Image, 2010. Niveles de procesamiento y precisión de localización. https://www.intelligence-airbusds.com/files/pmedia/public/r2006_9_spot_niveles_de_preprocesamiento_esp_sept2010.pdf

Sun, H., Qie, G., Wang, G., Tan, Y., Li, J., Peng, Y, and Luo, C., 2015. Increasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysis. Remote Sensing 7(11), 15114-15139. https://doi.org/10.3390/rs71115114

Thayn, J. B., 2020. Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing. Marine Geodesy 43(5), 493-508. https://doi.org/10.1080/01490419.2020.1751753

Vargas-Larreta, B., López-Sánchez, C. A., Corral-Rivas, J. J., López-Martínez, J. O., Aguirre-Calderón, C. G. y Álvarez-González, J. G., 2017. Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 8(8), 269. https://doi.org/10.3390/f8080269

Yan, E., Lin, H., Wang, G., & Sun, H., 2015. Improvement of forest carbon estimation by integration of regression modeling and spectral unmixing of Landsat data. IEEE Geoscience and Remote Sensing Letters 12(9), 2003-2007. https://doi.org/10.1109/LGRS.2015.2451091

Published

2024-12-17

How to Cite

Almazán González, J. A., Prado Molina, J., Couturier, S., & Manzo Delgado, L. de L. (2024). Aerial biomass maps of forests in Northern Durango, Mexico, using subpixel, spectral and textural variables. Terra Digitalis, 8(2). https://doi.org/10.22201/igg.25940694e.2024.2.122

Issue

Section

Articles with maps

PLUMX Metrics