This section describes the methodology to calculate the eroded volume of rocks in valleys where the distribution of the non-eroded rocks is known. The observed deposits in the Las Minas area are presented as a reference to reproduce this methodology.

The following files are necessary to reproduce this method:

- Digital Elevation Model. In this case, a 30 m resolution SRTM and a duplicate of the DEM layer with hillshade effect for visualization are used.
- Polygon shapefile layer with the observed deposits (OD). This layer can include all the areas of interest since later they will be saved individually as separate layers. If the polygon shape includes only one feature, start from step 2.

The data analysis was performed using the following software:

- QGIS V.2.8.4-Wien with the SAGA Processing tools loaded.
- Worksheet space. In this case, Microsoft Excel.

Steps

1. Load the DEM and the shapefile of the observed deposits as layers in QGIS (Fig A.1).

Figure A.1

2. Select and save the polygon as an individual shapefile (select feature \rightarrow Layer \rightarrow Save as). Select the "*Save only selected features*" option. Rename the file as "*LM*" in the "*Save as*" field and click "*OK*" (Fig. A.2).

É	QGIS	Project	Edit	View	Layer Setting	s Plugins	Vector	Raster	Databas	e Web	Processin	g Wind	ow MMQGIS	Help			
• •	•				Create Layer		•	-Wien - E	roded bull	method			\cap				
			₿	»	Add Layer Embed Layer	s and Groups	► ۵	a 🎾	"Q				Q., 🖳		E <mark>_</mark>	»	? »
1.	. /	₿		8	E Copy style	er Definition	File		i 🕅	»	3	/ x,y	AC			»	abc »
	\$	\$	R	3	📓 Paste styl) 			R S	to que	2 (•	. 🕂 🛉	• •		»	🕼 »
۹°°	80			ayers	Toggle Ed	bute lable iting		26		142	N	2	AN AN	507	J.M.		194
•		🛶 🔻	lev-Pi	ain limi							2Nº	5	35 R	N	5		1A
•		- Lo	s Hum	eros ca	Save As				5123		1991	C		115	ATT	Car	6.57
62		XI	OD		Save As Laye	r Definition F	ile				15 X	N	1 molt	D	14	198	10
- T		XI	ID		📑 Remove L	ayer/Group	жD	in .		P.C.	10115	6	The state	50	250		A. A.
0	▶ 🗹	DE	M (SR	TM)	📑 Duplicate			118 1	S.		1086	5-	J FLR	ST	27	35	A ar
Po		DE	M + h	lishade				646	115		137	(Com	5 20	7-2	2	E Ja	280
T								Chille .		13 1 1	30N	Ve.	23	25	2127	12 Mar	and the second
					Properties			115		11.	The W	183	S. Su	AN	100		5-50
(a)					Query		жғ		and a	31.2	JAK-	N.		1 and		2	N.
(File					🛥 Labeling								tre	A	6	15	A law
						andau					as Mir	as	110	SIL	6 20		
						Overview					polyac	n	726020	89.9	~	100	1
					Remove A	ll from Overv	iew				polyge		r	5	1	first,	and and
×					Show All L	ayers	ት ≋ሀ	1							6		
1000000					🗢 Hide All La	yers	Ωжн								ath T	and a	04
1					 Show Sele Hide Sele 	cted Layers								H	The	T	A
*	-								TALICA CONTRA			Low	A SECTOR ALCON				The second second
8	Coord	inate:		67	7848,2192561		Scale	1:152,7	76 🞽 Ro	tation:	0.0		Render @ EF	SG:326	614 (OTF		

Figure A.2a

Save ve	ctor layer as	
Format ESRI Shapefile		\$
Save as LM		Browse
CRS Selected CRS (EPSG:3	2614, WGS 84 / UTM zon	e 14N) ᅌ 🎭
Encoding	System	\$
 Save only selected features Skip attribute creation Add saved file to map 		
Symbology export	No symbology	\$
Scale	1:50000	0
Extent (current: layer)		
Datasource Options		
✓ Layer Options		
Custom Options		
Help	Cano	el OK

Figure A.2b

3. Convert the polygon shapefile "*LM*" to a line shapefile by using the "*Polygon to Lines*" tool (Vector \rightarrow Geometry Tools \rightarrow Polygon to Lines) (Fig. A.3a). Insert the "*LM*" shapefile in the "*Input polygon vector layer*" field and create a new shapefile, here named "*LM lines*" (Fig A.3b).

Figure A.3a

Figure A.3b

4. Convert the line shapefile "*LM line*" to a point shapefile by using the "*Convert lines to points*" tool (Processing \rightarrow Toolbox \rightarrow Convert lines to points) (Fig A.4a). Insert the "LM lines" in the "*Lines*" field, select a 10 m distance in the "*Insert Distance*" field, save the file as "*LM point*" in the option "*Points*" field, and click "*Run*" (Fig A.4b). A new layer named "*Points*" is created, which is here renamed as "*LM point*" (Fig. A.4c). The resulting polygon is a shapefile with a point spaced every 10 m around the contour of the original LM shapefile (Fig. A.4d).

Figure A. 4a

Figure A.4b

Figure A.4c

5. Assign an altitude value to each point by using the "*Add grid values to points*" tool (Processing \rightarrow Toolbox \rightarrow Add grid values to points) (Fig. A.5a). Select the "*LM points*" layer in the "*Points*" field, select the "*DEM (SRTM)*" in the "*Grid*" field, and select the "*Nearest Neighbor*" option for the Interpolation (Fig A.5b). This process generates a new

layer named "Result" that will be renamed "LM point Z", which includes an attribute column in the shapefile with the Z value obtained from the DEM (Fig A.5c).

Figure A.5a

•••	Add grid va	lues to points	
	Parameters	Log Help	
Points			
LM points [EPSG:32614]			۰۰۰ 🥥
Grids			
1 elements selected			
Interpolation			
[0] Nearest Neighbor			0
Result			
's/Jaime/Documents/CGEO/	Cartografia/Volum	en/Prueba/Eroded bulk	LM/LM points Z.shp
Open output file after runn	ning algorithm		
O Multiple selection	on		
DEM (SRTM) [EPSG:32614]	ОК		
DEM + hillshade (SRTM) [EP	Cancel		
	Select all		
e	Clear selection		
	Toggle selection		Close Run

Figure A.5b

Figure A.5c

6. Generate an interpolated elevation surface using the elevation value of each point using the "*Interpolation*" tool (Raster \rightarrow Interpolation \rightarrow Interpolation) (Fig. A.6a). Fill the inputs "*Vector layers*" with "*LM point Z*" and "*Interpolation attribute*" field with "*DEMSRTM*", click "*Add*" button to create a new vector layer, select the "*Triangular interpolation (TIN)*" as the "*Interpolation method*", define a "*Cellsize*" resolution of 15 m for X and Y, create an output file named "*LM interpolated*", and click "*OK*" (Fig A.6b).

Figure A.6a

nput		Output						
Vector layers	LM points Z	Interpolation method	Triangular interpolation	on (TIN)	0	Number of source	205	4
Use z-Coordinate for interpolation		Cellsize X	494 C		0	Number of rows Cellsize Y	335 15.00000	
Vector layer Attribute	Type	X min 692732		X max	700153	20.00		
LM pol DEMSH		1 1111 2.177930+00		TIIIdX	2.18290	Set to current ext	ent	
		Output file Docume	nts/CGEO/Cartografia/	/olumen/P	rueba/Er	oded bulk LM/LM	interpolated	
		Add result to proje	ct					

Figure A.6b

7. Clip the created polygon "*LM interpolated*" to the original "*LM*" layer (raster \rightarrow extraction \rightarrow clipper) (Fig. A.7a). In the "*Clipper*" menu, select the "*LM interpolated*" file in the "*Input file (raster)*" field. Create a new file, here named "*LM interpolated clipped*", in the "*Output file*" field, select the "*Mask layer*" option and use the "*LM*" file and click "*Ok*" (Fig. A.7b).

Figure A.7a

Input file (raster)	LM interpolated	Select
Output file	Ik LM/LM interpolated clipped.ti	f Select
No data value	0	
Clipping mode		
Extent	 Mask layer 	
Mask layer	LM 🗾	Select
Create an ou	tput alpha band	
Create an ou Load into canvas dalwarp -q -cutlin	tput alpha band when finished 9	
Create an ou Load into canvas dalwarp -q -cutlin Jsers/Jaime/Doct /LM.shp -crop to Users/Jaime/Doct differedde hulk LM	tput alpha band when finished ments/CGEO/Cartografia/Volum uments/CGEO/Cartografia/Volum	nen/Prueb

Figure A.7b

8. The *"LM interpolated clipped"* polygon displays the surface of the deposit before erosion. This surface can be visualized using the Qgis2threejs plugin available in the QGIS "Manage and Install plugins" repository (ref of the plugin?) (Fig. A8).

Figure A.8a

Figure A.8b

9. Calculate the altitude difference between the interpolated surface and the actual DEM by using the "*Raster calculator tool*" (Raster \rightarrow Raster calculator) (Fig A.9a). Select the files from the "Raster bands" to form the subtraction "LM interpolated clipped@1" - "DEM (SRTM)@1" in the "Raster calculator expression" field (Figure A.9b). Create the new file in the "*Output layer*", here named "*LM altitude diff*", and click "*OK*". This process generates a new raster image with altitude values that represent the eroded thickness in each pixel.

Figure A.9a

Raster bands	Result lay	ər				
LM interpolated	Output lay	/er	umen/Prueba	a/Eroded bulk	LM/LM altitude diff	
DEM (SRTM)@	Current	layer extent				
DEM + hillshad	X min	692732.00000	0	XMax	700142.00000	0
	Y min	2177930.00000	0	Y max	2182955.00000	0
	Columns	494	0	Rows	335	0
	Output for	mat	GeoTIFF		0	
	Add res	sult to project				
Operators			•			
+ • sq	rt sin		cos (
- / co	is asin	tana	(an)			
< > =	<=	>= A	ND OR			
Raster calculator ex	pression					
M interpolated clip	oped@1" - "I	DEM (SRTM)@1"				
procession valid						

Figure A.9b

10. Convert the raster to a shapefile that contains the information of the eroded thickness for each pixel (raster \rightarrow conversion \rightarrow Polygonize (Raster to Vector)) (Fig. A.10a). Select the "*LM altitude diff*" file in the "*Input file*" field. Create the new vectorized file, here named "*LM diff vectorized*", in the "*Outputfile file for polygons (shapefile)*" field and click "*OK*" (Fig. A.10b). The resulting layer groups the pixels (15 x 15 m resolution defined in step 6) according to their height value. In the case of adjacent pixels with the same height value, this will appear merged (A10c). The height values can be consulted in the attribute table. Note the negative values; these will be later deleted because they mean areas topographic mounds that were not covered by the filling deposit.

Figure A.10a

Figure A.10b

Figure A.10c

11. To calculate the volume of each pixel, create a column with the area of each pixel. For this, use the *"Field calculator"* in the *"attribute table"*. In *"Field calculator"* select the *"Create a new field"* option, here named *"area"*, in the *"Output file name"*. Select *"Whole number (integer)"* in the *"Output file type"*. Finally, select the *"\$area"* function from the *"Functions"* menu (Fig. A.11a). A new column titled *"area"* is created in the attribute table, note that the areas are multiples of 225, this due the 15x15 m resolution of the vectorized image (Fig. A.11b).

Draw parter of selected heatures Output field name area Starts Fields and Name Search Search Search Search > Operators > Conditionals > Fields and Values > String > String Search String String <		Field calculator	
Expression Function stress scarch stress scarch stress Conditionals > Conditionals > Date and Time > String > Color Secondity Se	Only update 0 selected heatures Preate a new field Create virtual field Output field name area Output field type Whole number (integer) Output field width 10 C) Precision C)	DN	
= + / ^ II () Punctions sama > Conditionals > Returns the area size of the current feature. sama > Conditionals > Sarea > None Sarea Arguments > Color Seconetry Seconetry Sperimetry Sperimetry Sarea → 42 Sw Sw Sarea → 42	Expression Function Editor		
sama	= + - / * ^ II ()	Search Search	
Sv Sv	Sana	 P Operators Conditionals Conditionals Conditionals Conversions Date and Time String Color Geometry Secondary <li< td=""><td>ent feature.</td></li<>	ent feature.
Vuput preview: 225	Autput preview: 225 You are editing information on this layer	sv	I automatically be turned

Figure A.11a

DN				
	≎ = ε DN	V U	odate All	Update Selected
	DN v	area		
464	64	450		
465	66	450		
466	78	225		
467	75	225		
468	76	225		
469	87	225		
470	103	225		
471	104	225		
472	118	225		
473	119	225		
474	110	450		
475	98	450		
476	99	450		
477	82	225		
478	84	450		
479	74	450		
480	76	225		
481	65	225		
482	68	225		
483	66	225		
484	69	225		
485	79	225		
486	66	225		
487	63	225		
488	65	225		
489	60	225		
490	62	225		
491	47	225		

Figure A.11b

12. Calculate the volume by exporting the attribute table to a worksheet, in this case to a Microsoft Excel sheet. Here, sort the cells by the height value, and delete the negative and null values (Table A1). Multiplicate the height value by the area of each polygon in a new column named "*volume*". Finally, sum all the volumes to calculate the total volume eroded in m³. A conversion to km³ is recommended (Table A2).

height (m)	area (m ²)
-47	225
-32	225
-30	225
261	225
263	225
264	225
Table A.1	

height (m)	area (m ²)	volume (km ³)						
1	225	225						
1	225	225						
1	225	225						
261	225	58725	_					
263	225	59175						
264	225	59400						
		857159100	Total volume (m ³)					
	0.86 Total volume (km ³)							

Table A.2

For further Dense Rock Equivalent corrections of pyroclastic deposits, additional data is needed, such as rock density and lithic content.